Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339194

RESUMO

Exposure to hydrochloric acid (HCl) can provoke acute and chronic lung injury. Because of its extensive production for industrial use, frequent accidental exposures occur, making HCl one of the top five chemicals causing inhalation injuries. There are no Food and Drug Administration (FDA)-approved treatments for HCl exposure. Heat shock protein 90 (HSP90) inhibitors modulate transforming growth factor-ß (TGF-ß) signaling and the development of chemical-induced pulmonary fibrosis. However, little is known on the role of Heat Shock Protein 70 (HSP70) during injury and treatment with HSP90 inhibitors. We hypothesized that administration of geranylgeranyl-acetone (GGA), an HSP70 inducer, or gefitinib (GFT), an HSP70 suppressant, alone or in combination with the HSP90 inhibitor, TAS-116, would improve or worsen, respectively, HCl-induced chronic lung injury in vivo and endothelial barrier dysfunction in vitro. GGA, alone, improved HCl-induced human lung microvascular endothelial cells (HLMVEC) barrier dysfunction and, in combination with TAS-116, improved the protective effect of TAS-116. In mice, GGA reduced HCl toxicity and while TAS-116 alone blocked HCl-induced chronic lung injury, co-administration with GGA, resulted in further improvement. Conversely, GFT potentiated HCl-induced barrier dysfunction and impaired the antidotal effects of TAS-116. We conclude that combined treatments with HSP90 inhibitors and HSP70 inducers may represent a novel therapeutic approach to manage HCl-induced chronic lung injury and pulmonary fibrosis.


Assuntos
Antineoplásicos , Benzamidas , Lesão Pulmonar , Fibrose Pulmonar , Pirazóis , Camundongos , Humanos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Ácido Clorídrico/toxicidade , Proteínas de Choque Térmico HSP70/metabolismo , Células Endoteliais/metabolismo , Antineoplásicos/efeitos adversos , Gefitinibe/efeitos adversos , Proteínas de Choque Térmico HSP90/metabolismo
2.
Cells ; 11(6)2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35326496

RESUMO

Hydrochloric acid (HCl) exposure causes asthma-like conditions, reactive airways dysfunction syndrome, and pulmonary fibrosis. Heat Shock Protein 90 (HSP90) is a molecular chaperone that regulates multiple cellular processes. HSP90 inhibitors are undergoing clinical trials for cancer and are also being studied in various pre-clinical settings for their anti-inflammatory and anti-fibrotic effects. Here we investigated the ability of the heat shock protein 90 (HSP90) inhibitor AT13387 to prevent chronic lung injury induced by exposure to HCl in vivo and its protective role in the endothelial barrier in vitro. We instilled C57Bl/6J mice with 0.1N HCl (2 µL/g body weight, intratracheally) and after 24 h began treatment with vehicle or AT13387 (10 or 15 mg/kg, SC), administered 3×/week; we analyzed histological, functional, and molecular markers 30 days after HCl. In addition, we monitored transendothelial electrical resistance (TER) and protein expression in a monolayer of human lung microvascular endothelial cells (HLMVEC) exposed to HCl (0.02 N) and treated with vehicle or AT13387 (2 µM). HCl provoked persistent alveolar inflammation; activation of profibrotic pathways (MAPK/ERK, HSP90); increased deposition of collagen, fibronectin and elastin; histological evidence of fibrosis; and a decline in lung function reflected in a downward shift in pressure-volume curves, increased respiratory system resistance (Rrs), elastance (Ers), tissue damping (G), and hyperresponsiveness to methacholine. Treatment with 15 mg/kg AT13387reduced alveolar inflammation, fibrosis, and NLRP3 staining; blocked activation of ERK and HSP90; and attenuated the deposition of collagen and the development of chronic lung injury and airway hyperreactivity. In vitro, AT13387 prevented HCl-induced loss of barrier function and AKT, ERK, and ROCK1 activation, and restored HSP70 and cofilin expression. The HSP90 inhibitor, AT13387, represents a promising drug candidate for chronic lung injury that can be administered subcutaneously in the field, and at low, non-toxic doses.


Assuntos
Antineoplásicos , Lesão Pulmonar , Fibrose Pulmonar , Animais , Antineoplásicos/farmacologia , Benzamidas , Colágeno/metabolismo , Células Endoteliais/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Ácido Clorídrico/efeitos adversos , Inflamação/patologia , Isoindóis , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle
3.
Nutrients ; 13(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684599

RESUMO

We previously reported that female mice exhibit protection against chemically induced pulmonary fibrosis and suggested a potential role of estrogen. Phytoestrogens act, at least in part, via stimulation of estrogen receptors; furthermore, compared to residents of Western countries, residents of East Asian countries consume higher amounts of phytoestrogens and exhibit lower rates of pulmonary fibrosis. Therefore, we tested the hypothesis that dietary phytoestrogens ameliorate the severity of experimentally induced pulmonary fibrosis. Male mice placed on either regular soybean diet or phytoestrogen-free diet were instilled with 0.1 N HCl to provoke pulmonary fibrosis. Thirty days later, lung mechanics were measured as indices of lung function and bronchoalveolar lavage fluid (BALF) and lung tissue were analyzed for biomarkers of fibrosis. Mice on phytoestrogen-free diet demonstrated increased mortality and stronger signs of chronic lung injury and pulmonary fibrosis, as reflected in the expression of collagen, extracellular matrix deposition, histology, and lung mechanics, compared to mice on regular diet. We conclude that dietary phytoestrogens play an important role in the pathogenesis of pulmonary fibrosis and suggest that phytoestrogens (e.g., genistein) may be useful as part of a therapeutic regimen against hydrochloric acid-induced lung fibrosis and chronic lung dysfunction.


Assuntos
Dieta , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Fitoestrógenos/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Animais , Doença Crônica , Proteínas da Matriz Extracelular/metabolismo , Ácido Clorídrico , Inflamação/patologia , Contagem de Leucócitos , Pulmão/fisiopatologia , Lesão Pulmonar/complicações , Lesão Pulmonar/mortalidade , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fitoestrógenos/farmacologia , Fibrose Pulmonar/complicações , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
4.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445540

RESUMO

Exposure to hydrochloric acid (HCl) represents a threat to public health. Children may inhale higher doses and develop greater injury because of their smaller airways and faster respiratory rate. We have developed a mouse model of pediatric exposure to HCl by intratracheally instilling p24 mice (mice 24 days old; 8-10 g) with 2 µL/g 0.1 N HCl, and compared the profile of lung injury to that in HCl-instilled adults (10 weeks old; 25-30 g) and their age-matched saline controls. After 30 days, alveolar inflammation was observed with increased proteinosis and mononuclear cells in the bronchoalveolar lavage fluid (BALF) in both HCl-instilled groups. Young p24 animals-but not adults-exhibited higher NLR family pyrin domain containing 3 (NLRP3) inflammasome levels. Increased amounts of Transforming Growth Factor-ß (TGF-ß) mRNA and its intracellular canonical and non-canonical pathways (p-Smad2 and p-ERK) were found in the lungs of both young and adult HCl-instilled mice. Constitutive age-related differences were observed in the levels of heat shock protein family (HSP70 and HSP90). HCl equally provoked the deposition of collagen and fibronectin; however, significant age-dependent differences were observed in the increase in elastin and tenascin C mRNA. HCl induced pulmonary fibrosis with an increased Ashcroft score, which was higher in adults, and a reduction in alveolar Mean Alveolar Linear Intercept (MALI). Young mice developed increased Newtonian resistance (Rn) and lower PV loops, while adults showed a higher respiratory system resistance and elastance. This data indicate that young p24 mice can suffer long-term complications from a single exposure to HCl, and can develop chronic lung injury characterized by a stronger persistent inflammation and lesser fibrotic pattern, mostly in the airways, differently from adults. Further data are required to characterize HCl time- and dose-dependent injury in young animals and to identify new key-molecular targets.


Assuntos
Lesão Pulmonar Aguda/patologia , Envelhecimento , Líquido da Lavagem Broncoalveolar/química , Ácido Clorídrico/toxicidade , Inflamação/patologia , Fibrose Pulmonar/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente
5.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072833

RESUMO

We developed two models of chemically induced chronic lung injury and pulmonary fibrosis in mice (intratracheally administered hydrochloric acid (HCl) and intratracheally administered nitrogen mustard (NM)) and investigated male-female differences. Female mice exhibited higher 30-day survival and less weight loss than male mice. Thirty days after the instillation of either HCl or NM, bronchoalveolar lavage fluid displayed a persistent, mild inflammatory response, but with higher white blood cell numbers and total protein content in males vs. females. Furthermore, females exhibited less collagen deposition, milder pulmonary fibrosis, and lower Ashcroft scores. After instillation of either HCl or NM, all animals displayed increased values of phosphorylated (activated) Heat Shock Protein 90, which plays a crucial role in the alveolar wound-healing processes; however, females presented lower activation of both transforming growth factor-ß (TGF-ß) signaling pathways: ERK and SMAD. We propose that female mice are protected from chronic complications of a single exposure to either HCl or NM through a lesser activation of TGF-ß and downstream signaling. The understanding of the molecular mechanisms that confer a protective effect in females could help develop new, gender-specific therapeutics for IPF.


Assuntos
Colágeno/genética , Proteínas de Choque Térmico HSP90/genética , Fibrose Pulmonar Idiopática/genética , Fator de Crescimento Transformador beta/genética , Animais , Feminino , Regulação da Expressão Gênica/genética , Humanos , Ácido Clorídrico/toxicidade , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Mecloretamina/toxicidade , Camundongos , Proteínas Smad/genética
6.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635192

RESUMO

Increased levels of heat shock protein 90 (HSP90) have been recently implicated in the pathogenesis of pulmonary fibrosis and the use of HSP90 inhibitors constitutes a potential therapeutic approach. Similarly, acute exposure to nitrogen mustard (NM) is related to the development of chronic lung injury driven by TNF-α, TGF-ß, ERK and HSP90. Thus, we developed a murine model of NM-induced pulmonary fibrosis by instilling C57BI/6J mice with 0.625 mg/kg mechlorethamine hydrochloride. After 24 h, mice began receiving AUY-922, a second generation HSP90 inhibitor, at 1 mg/kg 2 times per week or 2 mg/kg 3 times per week, for either 10 or 30 days. AUY-922 suppressed the NM-induced sustained inflammation, as reflected in the reduction of leukocyte and protein concentrations in bronchoalveolar lavage fluid (BALF), and inhibited the activation of pro-fibrotic biomarkers, ERK and HSP90. Furthermore, AUY-922 maintained normal lung function, decreased the overexpression and accumulation of extracellular matrix proteins, and dramatically reduced histologic evidence of fibrosis in the lungs of mice exposed to NM. The HSP90 inhibitor, AUY-922, successfully blocked the adverse effects associated with acute exposures to NM, representing a promising approach against NM-induced pulmonary fibrosis.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/prevenção & controle , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Resorcinóis/farmacologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Lesão Pulmonar/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Mecloretamina/antagonistas & inibidores , Mecloretamina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Fibrose Pulmonar/patologia
7.
Inhal Toxicol ; 32(4): 141-154, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32362214

RESUMO

Objective: Sulfur mustards are toxic agents used as a chemical warfare in the twentieth century. Exposure to nitrogen mustards (NM), their more water-soluble analogs, is associated with respiratory, dermatological, neurological, and systemic symptoms whose severity depends on dose and length of contact. Long-term effects of acute inhalation have been related to the development of chronic lung injury and pulmonary fibrosis whose precise mechanisms and potential antidotes are yet to be discovered.Materials and methods: We have developed a model of NM-induced pulmonary fibrosis by intratracheally instilling mechlorethamine hydrochloride into C57Bl/6J male mice.Results and Discussion: Following mechlorethamine exposure, strong early and milder late inflammatory responses were observed. Initially, the number of white blood cells and levels of protein and pro-inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) increased, followed by increases in the number of macrophages and the levels of transforming growth factor-ß (TGF-ß), a pro-fibrotic mediator. Analysis of lung homogenates revealed increased phosphorylation of pro-fibrotic biomarkers, serine/threonine-selective protein kinases (p-ERK), and heat shock protein 90 (P-HSP90) at 10 and 30 days after exposure. Total collagen expression and deposition of extracellular matrix proteins also increased. Lung function measurements demonstrated the presence of both obstructive and restrictive disease in agreement with evidence of increased lower airway peribronchial collagen deposition and parenchymal fibrosis.Conclusions: We conclude that the mouse represents a useful model of NM-induced acute lung injury and chronic pulmonary fibrosis, the latter driven by the overexpression of TGF-ß, p-ERK, and P-HSP90. This model may prove useful in the pre-clinical development of antidotes and other countermeasures.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Substâncias para a Guerra Química , Modelos Animais de Doenças , Mecloretamina , Fibrose Pulmonar/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Doença Crônica , Citocinas/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Contagem de Leucócitos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Fator de Crescimento Transformador beta/metabolismo
8.
Exp Lung Res ; 46(6): 203-216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32400213

RESUMO

Aim/Purpose: Exposure to high levels of hydrochloric acid (HCl) is associated with severe lung injury including both acute inflammation and chronic lung disease, which leads to the development of pulmonary fibrosis. Currently, there are no specific therapeutic agents for HCl-induced lung injury. Heat shock protein 90 (HSP90) has been implicated in the pathogenesis of pulmonary fibrosis. Thus, we have used a murine model of intra-tracheal acid instillation to investigate the antidotal effects of AUY-922, a small molecule HSP90 inhibitor, already in clinical trials for various types of cancer, against HCl-induced chronic lung injury and pulmonary fibrosis.Methods: HCl (0.1 N, 2 µl/g body weight) was instilled into male C57Bl/6J mice at day 0. After 24 h, mice began receiving 1 mg/kg AUY-922, 2x/week for 15 or 30 days.Results: AUY-922 suppressed the HCl-induced sustained inflammation, as reflected in the reduction of leukocyte and protein concentrations in bronchoalveolar lavage fluid, and inhibited the activation of pro-fibrotic biomarkers, ERK and HSP90. Furthermore, AUY-922 improved lung function, decreased the overexpression and accumulation of extracellular matrix proteins and dramatically reduced histologic evidence of fibrosis in the lungs of mice exposed to HCl.Conclusions: We conclude that AUY-922, and possibly other HSP90 inhibitors, successfully block the adverse effects associated with acute exposures to HCl and may represent an effective antidote against HCl-induced chronic lung injury and fibrosis.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Ácido Clorídrico/farmacologia , Isoxazóis/farmacologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Resorcinóis/farmacologia , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Proteínas de Choque Térmico HSP90/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/metabolismo
9.
Inhal Toxicol ; 31(4): 147-160, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31232121

RESUMO

Objective: Accidental exposure to hydrochloric acid (HCl) is associated with acute lung injury in humans, development of long-term chronic airway obstruction, and fibrosis. However, the mechanisms responsible for the progression to pulmonary fibrosis remain unclear. We utilized a mouse model of progressive lung injury from a single exposure to HCl to investigate the effects of HCl on the lower respiratory tract. Materials and methods: HCl (0.05-0.3 N) or saline was injected intratracheally into male C57Bl/6J mice. At 1, 4, 10 and 30 days post instillation, bronchoalveolar lavage fluid (BALF) and lung tissues were collected and examined for multiple outcomes. Results and discussion: We observed an early inflammatory response and a late mild inflammation present even at 30 d post HCl exposure. Mice treated with HCl exhibited higher total leukocyte and protein levels in the BALF compared to the vehicle group. This was characterized by increased number of neutrophils, monocytes, and lymphocytes as well as pro-inflammatory cytokines during the first 4 d of injury. The late inflammatory response exhibited a predominant presence of mononuclear cells, increased permeability to protein, and higher levels of the pro-fibrotic mediator TGFß. Pro-fibrotic protein biomarkers, phosphorylated ERK, and HSP90, were also overexpressed at 10 and 30 d following HCl exposure. In vivo lung function measurements demonstrated lung dysfunction and chronic lung injury associated with increased lung hydroxyproline content and increased expression of extracellular matrix (ECM) proteins. The acute inflammation and severity of fibrosis increased in HCl-concentration dependent manner. Conclusions: Our findings suggest that the initial inflammatory response and pro-fibrotic biomarker upregulation may be linked to the progression of pulmonary fibrosis and airway dysfunction and may represent valuable therapeutic targets.


Assuntos
Poluentes Atmosféricos/toxicidade , Ácido Clorídrico/toxicidade , Exposição por Inalação/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Fibrose Pulmonar/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/análise , Proteínas da Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Exposição por Inalação/análise , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Função Respiratória
10.
J Cell Mol Med ; 22(3): 1792-1804, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29363851

RESUMO

Inflammation is the major cause of endothelial barrier hyper-permeability, associated with acute lung injury and acute respiratory distress syndrome. This study reports that p53 "orchestrates" the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1 and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1- and P21-activated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in contrast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of phospho-cofilin. 17AAG treatment resulted in reduced levels of active cofilin. Silencing of cofilin pyridoxal phosphate phosphatase (PDXP) blocked the LPS-induced hyper-permeability, and P53 inhibition reversed the 17AAG-induced PDXP down-regulation. P190RHOGAP suppression enhanced the LPS-triggered barrier dysfunction in endothelial monolayers. 17AAG treatment resulted in P190RHOGAP induction and blocked the LPS-induced pMLC2 up-regulation in wild-type mice. Pulmonary endothelial cells from "super p53" mice, which carry additional p53-tg alleles, exhibited a lower response to LPS than the controls. Collectively, our findings help elucidate the mechanisms by which p53 operates to enhance barrier function.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/fisiologia , Neuropeptídeos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Benzoquinonas/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Lactamas Macrocíclicas/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
11.
Sci Rep ; 6: 39018, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976727

RESUMO

The goal of this study was to investigate the role of MLC phosphatase (MLCP) in a LPS model of acute lung injury (ALI). We demonstrate that ectopic expression of a constitutively-active (C/A) MLCP regulatory subunit (MYPT1) attenuates the ability of LPS to increase endothelial (EC) permeability. Down-regulation of MYPT1 exacerbates LPS-induced expression of ICAM1 suggesting an anti-inflammatory role of MLCP. To determine whether MLCP contributes to LPS-induced ALI in vivo, we utilized a nanoparticle DNA delivery method to specifically target lung EC. Expression of a C/A MYPT1 reduced LPS-induced lung inflammation and vascular permeability. Further, increased expression of the CS1ß (MLCP catalytic subunit) also reduced LPS-induced lung inflammation, whereas the inactive CS1ß mutant increased vascular leak. We next examined the role of the cytoskeletal targets of MLCP, the ERM proteins (Ezrin/Radixin/Moesin), in mediating barrier dysfunction. LPS-induced increase in EC permeability was accompanied by PKC-mediated increase in ERM phosphorylation, which was more prominent in CS1ß-depleted cells. Depletion of Moesin and Ezrin, but not Radixin attenuated LPS-induced increases in permeability. Further, delivery of a Moesin phospho-null mutant into murine lung endothelium attenuated LPS-induced lung inflammation and vascular leak suggesting that MLCP opposes LPS-induced ALI by mediating the dephosphorylation of Moesin and Ezrin.


Assuntos
Lesão Pulmonar Aguda , Proteínas do Citoesqueleto/metabolismo , Endotélio Vascular/metabolismo , Lipopolissacarídeos/toxicidade , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/patologia , Humanos , Camundongos , Fosforilação
12.
Front Physiol ; 7: 284, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486403

RESUMO

BACKGROUND: Nox5 was the last member of the Nox enzyme family to be identified. Functionally distinct from the other Nox isoforms, our understanding of its physiological significance has been hampered by the absence of Nox5 in mouse and rat genomes. Nox5 is present in the genomes of other species such as the rabbit that have broad utility as models of cardiovascular disease. However, the mRNA sequence, characteristics, and functional analysis of rabbit Nox5 has not been fully defined and were the goals of the current study. METHODS: Rabbit Nox5 was amplified from rabbit tissue, cloned, and sequenced. COS-7 cells were employed for expression and functional analysis via Western blotting and measurements of superoxide. We designed and synthesized miRNAs selectively targeting rabbit Nox5. The nucleotide and amino acid sequences of rabbit Nox5 were aligned with those of putative rabbit isoforms (X1, X2, X3, and X4). A phylogenetic tree was generated based on the mRNA sequence for Nox5 from rabbit and other species. RESULTS: Sequence alignment revealed that the identified rabbit Nox5 was highly conserved with the predicted sequence of rabbit Nox5. Cell based experiments reveal that rabbit Nox5 was robustly expressed and produced superoxide at rest and in a calcium and PMA-dependent manner that was susceptible to superoxide dismutase and the flavoprotein inhibitor, DPI. miRNA-1 was shown to be most effective in down-regulating the expression of rabbit Nox5. Phylogenetic analysis revealed a close relationship between rabbit and armadillo Nox5. Rabbit Nox5 was relatively closely related to human Nox5, but lies in a distinct cluster. CONCLUSION: Our study establishes the suitability of the rabbit as a model organism to further our understanding of the role of Nox5 in cardiovascular and other diseases and provides new information on the genetic relationship of Nox5 genes in different species.

13.
Am J Physiol Lung Cell Mol Physiol ; 309(12): L1410-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26498249

RESUMO

Transendothelial hyperpermeability caused by numerous agonists is dependent on heat shock protein 90 (Hsp90) and leads to endothelial barrier dysfunction (EBD). Inhibition of Hsp90 protects and restores transendothelial permeability. Hyperacetylation of Hsp90, as by inhibitors of histone deacetylase (HDAC), suppresses its chaperone function and mimics the effects of Hsp90 inhibitors. In this study we assessed the role of HDAC in mediating lipopolysaccharide (LPS)-induced transendothelial hyperpermeability and acute lung injury (ALI). We demonstrate that HDAC inhibition protects against LPS-mediated EBD. Inhibition of multiple HDAC by the general inhibitors panobinostat or trichostatin provided protection against LPS-induced transendothelial hyperpermeability, acetylated and suppressed Hsp90 chaperone function, and attenuated RhoA activity and signaling crucial to endothelial barrier function. Treatment with the HDAC3-selective inhibitor RGFP-966 or the HDAC6-selective inhibitor tubastatin A provided partial protection against LPS-mediated transendothelial hyperpermeability. Similarly, knock down of HDAC3 and HDAC6 by specific small-interfering RNAs provided significant protection against LPS-induced EBD. Furthermore, combined pharmacological inhibition of both HDAC3 and -6 attenuated the inflammation, capillary permeability, and structural abnormalities associated with LPS-induced ALI in mice. Together these data indicate that HDAC mediate increased transendothelial hyperpermeability caused by LPS and that inhibition of HDAC protects against LPS-mediated EBD and ALI by suppressing Hsp90-dependent RhoA activity and signaling.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Acetilação/efeitos dos fármacos , Lesão Pulmonar Aguda/metabolismo , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Histona Desacetilases/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
14.
Am J Physiol Lung Cell Mol Physiol ; 308(8): L776-87, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25713322

RESUMO

New therapies toward heart and blood vessel disorders may emerge from the development of Hsp90 inhibitors. Several independent studies suggest potent anti-inflammatory activities of those agents in human tissues. The molecular mechanisms responsible for their protective effects in the vasculature remain unclear. The present study demonstrates that the transcription factor p53, an Hsp90 client protein, is crucial for the maintenance of vascular integrity, protects again LPS-induced endothelial barrier dysfunction, and is involved in the mediation of the anti-inflammatory activity of Hsp90 inhibitors in lung tissues. p53 silencing by siRNA decreased transendothelial resistance (a measure of endothelial barrier function). A similar effect was induced by the p53 inhibitor pifithrin, which also potentiated the LPS-induced hyperpermeability in human lung microvascular endothelial cells (HLMVEC). On the other hand, p53 induction by nutlin suppressed the LPS-induced vascular barrier dysfunction. LPS decreased p53 expression in lung tissues and that effect was blocked by pretreatment with Hsp90 inhibitors both in vivo and in vitro. Furthermore, the Hsp90 inhibitor 17-allyl-amino-demethoxy-geldanamycin suppressed the LPS-induced overexpression of the p53 negative regulator MDMX as well as p53 and MDM2 (another p53 negative regulator) phosphorylation in HLMVEC. Both negative p53 regulators were downregulated by LPS in vivo. Chemically induced p53 overexpression resulted in the suppression of LPS-induced RhoA activation and MLC2 phosphorylation, whereas p53 suppression caused the opposite effects. These observations reveal new mechanisms for the anti-inflammatory actions of Hsp90 inhibitors, i.e., the induction of the transcription factor p53, which in turn can orchestrate robust vascular anti-inflammatory responses both in vivo and in vitro.


Assuntos
Endotélio Vascular/metabolismo , Lipopolissacarídeos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Permeabilidade Capilar/imunologia , Células Cultivadas , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Endotélio Vascular/imunologia , Humanos , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Physiol Rep ; 2(10)2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25303952

RESUMO

Fat mass is linked mechanistically to the cardiovascular system through leptin, a 16 kDa protein produced primarily by adipocytes. In addition to increasing blood pressure via hypothalamic-sympathetic pathways, leptin stimulates monocyte migration, cytokine secretion, and other functions that contribute to atherosclerotic plaque development. These functions are also characteristics of CD16-positive monocytes that have been implicated in the clinical progression of atherosclerosis. This investigation sought to determine if leptin promoted the development of such CD16-positive monocytes. Cells from 45 healthy men and women with age ranging from 20 to 59 years were analyzed. Circulating numbers of CD14(++)16(++) monocytes, which are primary producers of TNFα, were positively related to plasma leptin concentrations (P < 0.0001), with a stronger correlation in men (P < 0.05 for leptin × sex interaction). In vitro, recombinant human leptin induced CD16 expression in a dose-related manner (P = 0.02), with a stronger influence on monocytes from men (P = 0.03 for leptin × sex interaction). There were no sex-related differences in total leptin receptor expression on any monocyte subtypes, relative expression of long versus short isoforms of the receptor, or soluble leptin receptor concentrations in the plasma. The number of circulating CD14(+)16(++) monocytes, which preferentially migrate into nascent plaques, was positively related to systolic blood pressure (R = 0.56, P = 0.0008) and intima-media thickness (R = 0.37, P = 0.03), and negatively related to carotid compliance (R = -0.39, P = 0.02). These observations indicate that leptin promotes the development of CD16-positive monocyte populations in a sex-specific manner and that these subpopulations are associated with diminished vascular function.

16.
Arterioscler Thromb Vasc Biol ; 34(8): 1704-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24947524

RESUMO

OBJECTIVE: Pulmonary hypertension (PH) is a progressive disease arising from remodeling and narrowing of pulmonary arteries (PAs) resulting in high pulmonary blood pressure and ultimately right ventricular failure. Elevated production of reactive oxygen species by NADPH oxidase 4 (Nox4) is associated with increased pressure in PH. However, the cellular location of Nox4 and its contribution to aberrant vascular remodeling in PH remains poorly understood. Therefore, we sought to identify the vascular cells expressing Nox4 in PAs and determine the functional relevance of Nox4 in PH. APPROACH AND RESULTS: Elevated expression of Nox4 was detected in hypertensive PAs from 3 rat PH models and human PH using qualititative real-time reverse transcription polymerase chain reaction, Western blot, and immunofluorescence. In the vascular wall, Nox4 was detected in both endothelium and adventitia, and perivascular staining was prominently increased in hypertensive lung sections, colocalizing with cells expressing fibroblast and monocyte markers and matching the adventitial location of reactive oxygen species production. Small-molecule inhibitors of Nox4 reduced adventitial reactive oxygen species generation and vascular remodeling as well as ameliorating right ventricular hypertrophy and noninvasive indices of PA stiffness in monocrotaline-treated rats as determined by morphometric analysis and high-resolution digital ultrasound. Nox4 inhibitors improved PH in both prevention and reversal protocols and reduced the expression of fibroblast markers in isolated PAs. In fibroblasts, Nox4 overexpression stimulated migration and proliferation and was necessary for matrix gene expression. CONCLUSION: These findings indicate that Nox4 is prominently expressed in the adventitia and contributes to altered fibroblast behavior, hypertensive vascular remodeling, and development of PH.


Assuntos
Túnica Adventícia/enzimologia , Hipertensão Pulmonar/enzimologia , NADPH Oxidases/metabolismo , Artéria Pulmonar/enzimologia , Túnica Adventícia/efeitos dos fármacos , Túnica Adventícia/patologia , Animais , Anti-Hipertensivos/farmacologia , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Hipertensão Pulmonar Primária Familiar , Fibroblastos/enzimologia , Fibroblastos/patologia , Células HEK293 , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/prevenção & controle , Hipóxia/complicações , Indóis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monocrotalina , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Pirróis , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Regulação para Cima
17.
J Biol Chem ; 289(8): 4710-22, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398689

RESUMO

Acute lung injury (ALI) is characterized by increased endothelial hyperpermeability. Protein nitration is involved in the endothelial barrier dysfunction in LPS-exposed mice. However, the nitrated proteins involved in this process have not been identified. The activation of the small GTPase RhoA is a critical event in the barrier disruption associated with LPS. Thus, in this study we evaluated the possible role of RhoA nitration in this process. Mass spectroscopy identified a single nitration site, located at Tyr(34) in RhoA. Tyr(34) is located within the switch I region adjacent to the nucleotide-binding site. Utilizing this structure, we developed a peptide designated NipR1 (nitration inhibitory peptide for RhoA 1) to shield Tyr(34) against nitration. TAT-fused NipR1 attenuated RhoA nitration and barrier disruption in LPS-challenged human lung microvascular endothelial cells. Further, treatment of mice with NipR1 attenuated vessel leakage and inflammatory cell infiltration and preserved lung function in a mouse model of ALI. Molecular dynamics simulations suggested that the mechanism by which Tyr(34) nitration stimulates RhoA activity was through a decrease in GDP binding to the protein caused by a conformational change within a region of Switch I, mimicking the conformational shift observed when RhoA is bound to a guanine nucleotide exchange factor. Stopped flow kinetic analysis was used to confirm this prediction. Thus, we have identified a new mechanism of nitration-mediated RhoA activation involved in LPS-mediated endothelial barrier dysfunction and show the potential utility of "shielding" peptides to prevent RhoA nitration in the management of ALI.


Assuntos
Lesão Pulmonar/enzimologia , Lesão Pulmonar/patologia , Proteína rhoA de Ligação ao GTP/metabolismo , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Sequência de Aminoácidos , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Ativação Enzimática , Humanos , Lipopolissacarídeos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/patologia , Dados de Sequência Molecular , Óxido Nítrico Sintase Tipo III/metabolismo , Nitrosação , Peptídeos/metabolismo , Substâncias Protetoras/metabolismo , Tirosina/metabolismo , Proteína rhoA de Ligação ao GTP/química
18.
Am J Respir Cell Mol Biol ; 50(1): 170-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23972231

RESUMO

Permeability of the endothelial monolayer is increased when exposed to the bacterial endotoxin LPS. Our previous studies have shown that heat shock protein (Hsp) 90 inhibitors protect and restore LPS-mediated hyperpermeability in bovine pulmonary arterial endothelial cells. In this study, we assessed the effect of Hsp90 inhibition against LPS-mediated hyperpermeability in cultured human lung microvascular endothelial cells (HLMVECs) and delineated the underlying molecular mechanisms. We demonstrate that Hsp90 inhibition is critical in the early phase, to prevent LPS-mediated hyperpermeability, and also in the later phase, to restore LPS-mediated hyperpermeability in HLMVECs. Because RhoA is a well known mediator of endothelial hyperpermeability, we investigated the effect of Hsp90 inhibition on LPS-mediated RhoA signaling. RhoA nitration and activity were increased by LPS in HLMVECs and suppressed when pretreated with the Hsp90 inhibitor, 17-allylamino-17 demethoxy-geldanamycin (17-AAG). In addition, inhibition of Rho kinase, a downstream effector of RhoA, protected HLMVECs from LPS-mediated hyperpermeability and abolished LPS-induced myosin light chain (MLC) phosphorylation, a target of Rho kinase. In agreement with these findings, 17-AAG or dominant-negative RhoA attenuated LPS-induced MLC phosphorylation. MLC phosphorylation induced by constitutively active RhoA was also suppressed by 17-AAG, suggesting a role for Hsp90 downstream of RhoA. Inhibition of Src family kinases also suppressed RhoA activity and MLC phosphorylation. Together, these data indicate that Hsp90 inhibition prevents and repairs LPS-induced lung endothelial barrier dysfunction by suppressing Src-mediated RhoA activity and signaling.


Assuntos
Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Lipopolissacarídeos/efeitos adversos , Quinases Associadas a rho/metabolismo , Animais , Benzoquinonas/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Lactamas Macrocíclicas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
19.
Am J Respir Cell Mol Biol ; 50(3): 614-25, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24134589

RESUMO

Acute lung injury (ALI) is a severe hypoxemic respiratory insufficiency associated with lung leak, diffuse alveolar damage, inflammation, and loss of lung function. Decreased dimethylaminohydrolase (DDAH) activity and increases in asymmetric dimethylarginine (ADMA), together with exaggerated oxidative/nitrative stress, contributes to the development of ALI in mice exposed to LPS. Whether restoring DDAH function and suppressing ADMA levels can effectively ameliorate vascular hyperpermeability and lung injury in ALI is unknown, and was the focus of this study. In human lung microvascular endothelial cells, DDAH II overexpression prevented the LPS-dependent increase in ADMA, superoxide, peroxynitrite, and protein nitration. DDAH II also attenuated the endothelial barrier disruption associated with LPS exposure. Similarly, in vivo, we demonstrated that the targeted overexpression of DDAH II in the pulmonary vasculature significantly inhibited the accumulation of ADMA and the subsequent increase in oxidative/nitrative stress in the lungs of mice exposed to LPS. In addition, augmenting pulmonary DDAH II activity before LPS exposure reduced lung vascular leak and lung injury and restored lung function when DDAH activity was increased after injury. Together, these data suggest that enhancing DDAH II activity may prove a useful adjuvant therapy to treat patients with ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Amidoidrolases/metabolismo , Células Endoteliais/enzimologia , Terapia Genética , Lipopolissacarídeos , Pulmão/irrigação sanguínea , Microvasos/enzimologia , Edema Pulmonar/prevenção & controle , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/genética , Amidoidrolases/genética , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Líquido da Lavagem Broncoalveolar/química , Permeabilidade Capilar , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Pulmão/enzimologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/patologia , Estresse Oxidativo , Ácido Peroxinitroso/metabolismo , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/enzimologia , Edema Pulmonar/genética , Superóxidos/metabolismo , Fatores de Tempo , Transfecção , Regulação para Cima
20.
Am J Physiol Lung Cell Mol Physiol ; 304(12): L883-93, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23585225

RESUMO

Heat shock protein 90 (Hsp90) inhibitors were initially developed as anticancer agents; however, it is becoming increasing clear that they also possess potent anti-inflammatory properties. Posttranslational modifications of Hsp90 have been reported in tumors and have been hypothesized to affect client protein- and inhibitor-binding activities. In the present study we investigated the posttranslational modification of Hsp90 in inflammation. LPS, a prototypical inflammatory agent, induced concentration- and time-dependent tyrosine (Y) phosphorylation of Hsp90α and Hsp90ß in bovine pulmonary arterial and human lung microvascular endothelial cells (HLMVEC). Mass spectrometry identified Y309 as a major site of Y phosphorylation on Hsp90α (Y300 of Hsp90ß). LPS-induced Hsp90 phosphorylation was prevented by the Hsp90 inhibitor 17-allyl-amino-demethoxy-geldanamycin (17-AAG) in vitro as well as in lungs from LPS-treated mice, in vivo. Furthermore, 17-AAG prevented LPS-induced pp60src activation. LPS-induced Hsp90 phosphorylation was also prevented by the pp60src inhibitor PP2. Additionally, Hsp90 phosphorylation was induced by infecting cells with a constitutively active pp60src adenovirus, whereas either a dominant-negative pp60src adenovirus or reduced expression of pp60src by a specific siRNA prevented the LPS-induced Y phosphorylation of Hsp90. Transfection of HLMVEC with the nonphosphorylatable Hsp90ß Y300F mutant prevented LPS-induced Hsp90ß tyrosine phosphorylation but not pp60src activation. Furthermore, the Hsp90ß Y300F mutant showed a reduced ability to bind the Hsp90 client proteins eNOS and pp60src and HLMVEC transfected with the mutant exhibited reduced LPS-induced barrier dysfunction. We conclude that inflammatory stimuli cause posttranslational modifications of Hsp90 that are Hsp90-inhibitor sensitive and may be important to the proinflammatory actions of Hsp90.


Assuntos
Células Endoteliais/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Animais , Benzoquinonas/farmacologia , Bovinos , Células Cultivadas , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/imunologia , Humanos , Lactamas Macrocíclicas/farmacologia , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/imunologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/imunologia , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...